
Hoe 2, Electric Boogaloo

What is Hoe?
Hoe is a library that provides extensions to rake to automate every step of the development process from
genesis to release. It provides project creation, confi

Why Use Hoe?
Depl o y m e n t, the DRY way

Hoe focuses on keeping everything in its place in a useful form and intelligently extracting what it needs.
As a result, there are no extra YAML files, config directories, ruby files, or any other artifacts in your
release that you wouldn't already have.
README.txt

Most projects have a readme file of some kind that describes the project. Hoe is no different. The
readme fi

rethetoward(Aslles thinl foatis os tyit neeto knoweto get str aeand cludctinahe)
Tj ET Q q 0.89701 0 0 -0.89701 36 1423.375 cm BT -00 255 Tc 12 0 0 -12 776835
Tm /F3.0 1 Tft descptis es,(revant urlles, de synopsileslicense, etcct. Hoknowctsoweto (renahbasic rdocul foataeane)
Tj ET Q q 0.89701 0 0 -0.89701 36 1423.375 cm Bc 12 0 0 -12 778135 Tm /F3
0 1 TfonÞ) Tj ET Q q 0.89701 0 0 -0.89701 36 1423.375 cm BT -005105 Tc 12 0 0 -182778150
Tm /F3.0 1 Tflthto pulleoutes tht descptis (m ansummary ruby eensis), urllesm any ext paragraphsesfnd foat yomayne renrytsme Þ mlso s ixt As anI'vHoe u anet ribtul fse e evsis eso berpareesfne e codectY yocansocunrytsmxÞ An you evsis es anocuseet autooaticslly durctinxÞ r l l y t s m s l l e s t 7
 r t s m s o i e n t W i t h s e e ` h o e - s e a t a l e r b ` t s u g c t n t , t h a b r a n c h i b e s t h a r e l e a m s i y o u p e r l f l a c x Þ

A e e p a c k a g i b e t o , r u l f g e , e o s t s i n e w s s s f n e e a r e l e a m t o , r u l f g e A s a n m y r l o g , A s a n c r a f i b e a n s x Þf u t u 7
 r s u g c t s w i l l e s e a n e e e m a i l g d i r e l y) . x Þ

m(Mosof)ret againds.Þ) Tj ET Q q 0.89701 0 0 -0.89701 36 1423.375
cm B -0.0861 Tc 12 0 0 -1014130074 Tm /F3.0 1 TfE eveone .Þ

Setting Up Rubyfor ge
Assuming you're planning on releasing on rubyforge, you need to have rubyforge set up properly. Getting
everything up and running the first time can be a bit of a PITA, but once you're done, you'll never have to do
(most of) it again.

Everyone loves flowcharts! So enjoy:

Virgin?

New Project?

rubyforge create_package groupname packagename
rubyforge names

sudo gem install hoe
rubyforge setup
edit ~/.rubyforge/user-config.yml
rubyforge config

no

yes

cd project; rake release VERSION=x.y.z

yes

no

W riting a Hoe Spec
Conve r t i n g Hoe 1.x Specs

Not too much to do here. Basic steps to convert are:

+ Hoe.new becomes Hoe.spec.
+ Remove the internal require and version constant from Hoe.spec.
+ Remove the block argument (a bug/feature in 1.9 prevents it atm).
+ Make sure that you use `self.` for assignments to prevent assigning to a local variable.
Hoe 1.x Spec
 require 'hoe'
 require './lib/blah.rb'

 Hoe.new('blah', Blah::VERSION) do |blah|
 blah.rubyforge_name = 'seattlerb'

 blah.developer 'Ryan Davis', 'ryand-ruby@zenspider.com'

 blah.extra_deps << 'whatevs'
 end

Hoe 2.x Spec
 require 'hoe'

 Hoe.spec 'blah' do
 self.rubyforge_name = 'seattlerb'

 developer 'Ryan Davis', 'ryand-ruby@zenspider.com'

 extra_deps << 'whatevs'
 end

Prettier, no?

W riting a Hoe Spec
Conve r t i n g Hoe 1.x Specs

Not too much to do here. Basic steps to convert are:

+ Hoe.new becomes Hoe.spec.
+ Remove the internal require and version constant from Hoe.spec.
+ Remove the block argument (a bug/feature in 1.9 prevents it atm).
+ Make sure that you use `self.` for assignments to prevent assigning to a local variable.

Hoe 2.x Spec
 require 'hoe'

 Hoe.spec 'blah' do
 self.rubyforge_name = 'seattlerb'

 developer 'Ryan Davis', 'ryand-ruby@zenspider.com'

 extra_deps << 'whatevs'
 end

Prettier, no?

From Scra t c h
The easiest way to get started with hoe is to use its included command-line tool `sow`:

 % sow my_new_project

That will create a new directory `my_new_project` with a skeletal project inside. You need to edit the
Rakefile with developer information in order to meet the minimum requirements of a working hoe-spec.
You should also go fix all the things it points out as being labeled with "FIX" in the README.txt file.

Using Sow Templa t e s
If you're planning on releasing a lot of packages and you've got certain recipes you like to have in your

Extending Hoe with Plugins
Hoe has a flexible plugin system with the release of 2.0. This allowed Hoe to be refactored. That in and of

Questions & Counterpoints

"Why not just writ e gems p e c s ?"
Short answer: I've done that and it is way too much work.

Medium answer: It isn't DRY. All my projects have a history file, a readme, some code with a version
string, etc. Why should I duplicate all of that information into the gem spec when I can have code do it for
me automatically? It is less error prone as a result. I screw up things, hoe doesn't.

Long answer: See that hoe spec above for the fictional "blah" project? This is the corresponding gem
spec in all its glory (as cleaned up as I can/am willing to get it):

 # -*- encoding: utf-8 -*-

 Gem::Specification.new do |s|
 s.name = "blah"
 s.version = "1.0.0"

 s.authors = ["Ryan Davis"]
 s.description = "..."
 s.email = ["ryand-ruby@zenspider.com"]
 s.executables = ["blah"]
 s.extra_rdoc_files = [...]
 s.files = [...]
 s.homepage = "..."
 s.rdoc_options = ["--main", "README.txt"]
 s.rubyforge_project = "seattlerb"
 s.summary = "..."
 s.test_files = [...]

 s.cert_chain = ["/Users/ryan/.gem/gem-
public_cert.pem"]
 s.signing_key = "/Users/ryan/.gem/gem-private_key.pem"

 s.add_runtime_dependency(%q<whatevs>, [">= 0"])
 end

"What abo u t (new g e m | b o n e s | e c h o e | j o e | g e m i f y |...)?"
Smoke 'em if ya got 'em.

All I can really say is that Hoe works _really_ well for me and a lot of others. As of this writing, a simple
grep across all current-version gems show that Hoe is used by 1375 (or 27.5%) of the 4993 published
gems. Some of these were probably created by other packages that wrap up Hoe (like newgem), but
further analysis was not attempted to differentiate actual origin. if they use Hoe, then they were counted
as Hoe.

